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We review the electronic properties of almost localized electrons and the theoretical interpretation of 
the observed discontinuous metal-insulator (Mott) transitions in V,Or system, induced by electron-el- 
ectron interaction, Emphasis is placed on the correlated nature of these electronic states, which are 
described within a parametrized, Hubbard-type model. In particular, we concentrate on the equilibrium 
Fermi liquid properties and the Mott transition at nonzero temperature. The effective mass of almost 
localized quasiparticles is spin dependent and varies strongly in an applied magnetic field. The correlated 
metal-Mott insulator boundary marks the limiting line of the applicability of the Fermi liquid concept 
to interacting electrons in a solid. In other words, the insulator to metal (Mott) transitions in VrO, 
system are regarded as examples of localization-delocalization transformations involving 3d electrons. 
Explicit calculations of the phase diagram are performed with the help of Gutzwiller method and its 
generalization t0 nonzero kXTIperatUI%S. 0 1990 Academic Press, Inc. 

1. Introduction 

The electronic properties of solids are 
usually described in terms of one of the two 
distinct theoretical schemes: (i) The 
Bloch-Wilson formulation for extended 
(band) states and (ii) the atomic approach 
based on the crystal-field theory and the 
Heisenberg exchange interactions for quasi- 
atomic (localized) states of systems with 
partially filled 3d or 4f shells. The first is 
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usually applied to ordinary metals and semi- 
conductors, while the latter is appropriate 
for description of 3d or 4fstates in magnetic 
insulators and semiconductors. These mod- 
els and their extensions by perturbation 
techniques are applicable to a large number 
of solids. Nonetheless, there exist systems 
(such as transition metal oxides or rare earth 
mixed-valence and heavy fermion systems) 
that exhibit properties intermediate be- 
tween conventional metals and magnetically 
ordered insulators. In particular, these are 
the systems such as V,O, , La,-,Sr,CuO,, 
NiS,-,Se,, and SmS, in which a transition 
from the magnetic insulating to metallic 
state takes place under changes of tempera- 
ture, of alloy composition, or of pressure. A 
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major challenge to theorists has been the 
development of theories. that successfully 
describe such spectacular discontinuous 
(magnetic) insulator to metal transitions 
which do not necessarily involve a change 
of crystal symmetry. The present under- 
standing of this class of materials starts with 
the works by Mott (I) who emphasized that 
in the systems like NiO, COO, and MnO the 
short-range part of the Coulomb repulsion 
between the 3d electrons may exceed their 
band energy; the extended (band) states 
may then be unstable with respect to the 
localized (atomic like) states. This idea was 
put on a quantitative basis by Hubbard (2) 
who devised a narrow-band model with 
short-range (intraatomic) Coulomb repul- 
sion between the electrons. The type of 
ground state encountered in the Hubbard 
model depends on the ratio UI W of intra- 
atomic Coulomb repulsion (U) to the so- 
called bare band width (W). For the systems 
with U > W the repulsive energy of two 3d 
electrons on the same metallic (M) orbital 
(e.g., the metal it& configuration) is larger 
than the energy &k by allowing the electrons 
to form a band. Thus, the d-shell occupancy 
remains fixed (3d* in the case of Ni2+02-) 
and the material remains insulating even 
though the spins of 3d electrons are free to 
reorient and the occupancy of 3d orbitals 
does not correspond to a filled band (3). 
Even more important,the 3d orbitals remain 
partially filled even though on the single- 
particle energy scale they are placed inside 
the filled oxygen 2p band. 

Most of the insulators with partially filled 
3d shells (which are called the Mott insula- 
tors) order antiferromagnetically. The mod- 
ern version of the microscopic mechanism 
responsible for this magnetic ordering of the 
Mott insulators has been provided by An- 
derson (4) who introduced the concept of 
virtual d-d transitions stabilizing the spin 
singlet configuration of the neighboring pair 
of cations in second order. This idea of the 
so-called kinetic exchange is connected with 

the earlier concept of superexchunge in- 
voked by Kramers, (5); in the latter picture 
the virtual d-d transition is realized via a 
p-d transition followed by a d-p transition 
between the magnetic cation and anion (p) 
orbitals. The kinetic exchange interaction 
takes place also in strongly correlated met- 
als (6), i.e., when the d orbitals on average 
contain less than one electron per atom and 
hence the electric transport through the lat- 
tice is possible without requiring excitation 
of the electron across the gap - U. 

Most of the pioneering work concentrated 
on the nature and the stability of the Mott 
insulating state at temperature T = 0 which 
replaces the starting metallic state charac- 
terized by a half-filled narrow band, when 
the electron-electron interactions are in- 
cluded. For this purpose two pictures were 
involved. In the first introduced by Hubbard 
(2) a single half-filled band splits with grow- 
ing U/W ratio into two (Hubbard) subbands 
and therefore the insulating state is stabi- 
lized. The lower Hubbard subband contains 
half(N) of the total number of states in the 
starting band which are separated from the 
upper subband by a gap E, = U - W. The 
transition at temperature T = 0 is continu- 
ous, as shown schematically in Fig. 1, where 
the W/U ratio simulates the inverse inter- 
atomic separation. At nonzero temperature 
the system exhibits semiconducting behav- 
ior. In this picture the nature of the spin 
state in the insulating state is not obvious 
and the empty (hole) states in the lower sub- 
bands will behave as itinerant carriers. 

An alternative picture of the insulating 
state has been proposed by Gutzwiller (7) 
and by Brinkman and Rice (8). In this pic- 
ture the mutual balance between the band 
energy renormalized by the Coulomb repul- 
sion and the interaction part is calculated in 
a self-consistent way. The latter outbal- 
ances the former for U > UC - W, and 
then the electron system reduces to a set 
of localized states. At the metal-insulator 
transition the electron states transform from 
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FIG. 1. The Hubbard splitting of the single-particle 
band states in a half-filled configuration, for the strength 
of the intraatomic Coulomb interaction U > U,. The 
filled, lower Hubbard subband for U > U, represents 
the Mott insulating state with one electron per atom. 

the Bloch-type to the atomic type; i.e., the 
effective mass of the carriers diverges for 
U = U, . This picture of the Mott-Hubbard 
transition can be reformulated in quasiparti- 
cle terms (8-10) by interpreting the renor- 
malization of the band energy arising from 
the electron-electron interactions as a band 
narrowing (or mass enhancement) of the 
quasiparticle states, as represented sche- 
matically in Fig. 2. The quasiparticle picture 
of the almost localized electrons allows for a 
generalization to nonzero temperatures and 
will thus be the principal subject of the pres- 
ent article. We will also include the kinetic 
exchange interaction in our discussion and 
then rationalize the whole phase diagram of 
the systems with metal-insulator transition 
using pure and doped V,O, as a canonical 
example of the concepts developed earlier. 

2. Groundstate Energy of Correlated 
Metallic State 

In what follows we restrict our discussion 
to a nondegenerate band whose degree of 
occupation is described by the average num- 
ber II of electrons per atom. We consider 

only the bands half-filled or less-than-half 
filled, i.e., with 0 I II 5 1; for a greater band 
filling (1 < n I 2) the hole concept may be 
invoked. We follow the methodology of Ref. 
(9) in writing the band energy of a set of N 
atomic sites as 

EBIN = (t/N) 2 (UBUjr>, (2.1) 
i,j(i)cr 

where ajg is the annihilation operator for an 
electron with spin (T located in the Wannier 
state centered on site j which is nearest 
neighbor to site i, af is the creation operator 
for an electron of spin o in the Wannier state 
located on site i, and t is the transfer integral 
between sites i andj. The electron-electron 
repulsion is modeled by the Hubbard type 
of term. 

(2.2) 

where nit = Ui’,ai~ is the particle number 
operator for occupation of site i by an elec- 
tron of spin (+ and U is the magnitude of 
Coulomb repulsion for two electrons with 

‘1 a) Et b) 

FIG. 2. Schematic representation of bare (pa) and 
quasiparticle (p) densities of states. The band narrow- 
ing factor Cp describing the many-body mass enhance- 
ment is also specified. The presence of factor @ relates 
the degeneracy temperature Tn for quasiparticles 
to that (i”6) for bare electrons via the relation TT, = 
T&P. 



opposite spins and in the same Wannier 
state. 

We consider the situation when the terms 
(2.1) and (2.2) are comparable; therefore, 
the expectation value (nit 12i r) = 7 is re- 
garded as a fundamental parameter which 
must be determined variationally by calcu- 
lating the balance between those two terms. 
For that purpose introduce the total energy 
E as a sum of (2.1) and the expectation value 
of (2.2), and then rewrite the sum in the form 

f2 = -8/[n3(1 - n/2)]. (2.7~) 

The optimal value of r) = na is then specified 
by 

(2.8) 

E/N = Ca(q)E + Vq, (2.3) 

where Ca($ is a function that describes a 
restricted motion of particles under the pres- 
ence of the Coulomb repulsion and is to be 
determined, and E is the average bare band 
energy per atomic site, i.e., 

with V, = 81E1 = 2W being the critical value 
of the parameter V above which there are 
no double occupancies. The value CJc = 2 W 
specifies the case with featureless form of 
the bare density of states (see below). 

A special case of interest arises when 
there is exactly one electron per atom, i.e., 
when n = 1. In this special but important 
situation one finds from (2.8) and (2.5) and 
(2.7) that (8, 10) 

E = (r/N) C (Ui’,Uj,) ~ (l/N)~~ &k, 
i.j(i)u F 

(2.4) 

7jo = a(1 - V/V,), (2.9a) 

@‘(rlo) = 1 - (uluc)2, (2.9b) 

where &k is the bare band energy of particle 
with quasimomentum hk. The function Q(r)) 
can be determined from the Taylor expan- 
sion; i.e., 

WV> =fo + fir, + .fh?7 (2.5) 

because with growing V, 77 + 0. The coeffi- 
cients f,, fi, and f2 are found by imposing 
the following conditions: 

(2.9~) 

(i) for V = 0 random site occupancy must 
prevail, whence 7) = (nit) (nit) = n2/4; 

(ii) The band energy for V = 0 must be 
equal to E, i.e., a’(~ = n2/4) = 1; and 

(iii) The band energy in the limit 17 = 0 is 

The quantity @(qo) plays a role of an opti- 
mized band narrowing factor; for in the 
absence of electron correlations (V = 0) 
@(qo) = 1. Also, for 12 = 1 the band energy 
vanishes when V = V,, i.e., when @(qo> 
= 0. To see directly that the nature of the 
ground state changes at V = UC we can 
calculate the magnitude of the square of the 
electron spin (S:), where the spin operator 
is defined through the relation 

Ca(r, = 0)E = -(W/2)n(l - n), (2.6) 

where W is the bare bandwidth of the band. 
These three conditions when imposed on 
Eq. (2.3), together with the equilibrium con- 
straint aE/dr, = 0, lead to the following rela- 
tions: 

= (Us Uil ) Us Uit ) (nit - nil)l2). (2.10) 

One finds that 

fo = (1 - n)l(l - n/2), (2.7a) 

f, = 4/ln(l - n/2)1. (2.7b) 

(S3 = ml - 2qiJ. (2.11) 

For V + U,, (Sf) + $(g + I), i.e., one 
obtains an atomic value of the electron spin. 
This means that the singlet configurations 
on each atom have been suppressed and the 
spin and charge fluctuations are energeti- 

” 1 _ . ,-, ~ , tally separated. In other words, the elec- 
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trons cannot move from their atomic loca- 
tions but their spins can fluctuate and 
correlate with those of electrons in neigh- 
boring localized states. The parameter q,, 
plays a role of the order parameter for the 
correlated metal + magnetic insulator tran- 
sition as we will see below. 

One should note that the approach can 
be generalized to the magnetically polarized 
state, e.g., when the external magnetic field 
is applied. In these circumstances the band 
narrowing is spin dependent, i.e., @($ += 
@‘,W , with 

@ATI = fo, + AT rl + f&P?*. 
(2.12) 

A straightforward application of the con- 
ditions (i)-(iii) in this case yields (11) 

f,, = (1 - nY(l - n,), (2.13a) 

fi, = NM - &A (2.13b) 

& = ll[n:n-,(l - n,)], (2.13~) 

so that 

@,= LX 
1 - n, 

[I - n + (2/n,)? - (lln&,)~*]. (2.14) 

Note that Eqs. (2.13a-2.13~) and (2.14) 
reduce respectively to (2.7a-2.7c) and 
(2.5) for the unpolarized state, i.e., for 
n, = n-, = n/2. 

Summarizing this section we emphasize 
that our approach is single-site in nature. 
This is because only the intraatomic correla- 
tions are treated properly while the intersite 
correlations are expressed via products of 
single-site probabilities (cf., expression 
(2.6) for the band energy for r], = 0 case). 
The system of N, = N electrons transforms 
into the system of localized magnetic mo- 
ments for the critical value U = UC of intra- 
atomic interaction. The metallic state of 
electrons for U+ UC (but below UC) is called 
the almost localized Fermi liquid. The phys- 
ical properties of this state will be discussed 

next, after the quasiparticle states repre- 
senting almost localized electrons are de- 
fined. 

3. Quasiparticle States and Properties of 
Almost Localized Electrons at T = 0 

The normalized band energy can be calcu- 
lated by defining the quasiparticle states 
with energy 

Ek = @(rl)%. (3.1) 

Namely, for these quasiparticle states obey- 
ing Fermi-Dirac statistics the distribution 
& for the band energy is 

WN = c Ek.fL, (3.2) 
km 

where 

fkcr = 

1 
1 + exP[P(E, - IdI’ 

(3.3) 

p = (kgT)-’ is the inverse temperature in 
energy units, and p is the chemical poten- 
tial. We can calculate (3.2) explicitly by de- 
termining the chemical potential from the 
equation 

(3.4) 

For T = 0 and for a featureless form of the 
density of states (DOS), i.e., for 

1 

1/W for - WI2 5 E 5 WI2 
PW = 

0 otherwise, 
(3.5) 

we obtain p = (n - l)W/2, and 

E,IN = (P(v)E 
= -@(7))W(l - n/2)n/2. (3.6) 

The physical interpretation of the fermion 
quasiparticles introduced above is as fol- 
lows. We consider particle dynamics close 
to the Fermi surface, i.e., within the energy 
range + k,T centered on p for given number 
No = NV of double occupancies. The value 
at r) is determined by the balance of much 
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larger energies Z < 0 and U > 0. In other 
words, the quasiparticles are regarded as 
fermions with self-consistently adjusted 
bandwidth. The principal difference with re- 
spect to the Landau theory of the Fermi 
liquid is in the manner in which the interac- 
tion part is included. Here it is determined 
by variational calculations. Note that the 
quasiparticle energy (3.1) contains two-par- 
ticle correlation function r) which is deter- 
mined variationally. The term “correlated 
electrons” bears its origin from incorpora- 
tion of this type of correlation into the sin- 
gle-particle picture of electron states. 

The quasiparticle interpretation pre- 
sented above is supported by the explicit 
calculations of the average ?&, within the 
Gutzwiller approach (12). Namely, accord- 
ing to the Gutzwiller scheme, 

nk, = (1 - %,)%T + &fir, (3.7) 

where 

n, - rl 
q” = n,(l - n,) 

i 
(1 - n + y)l12 + [ “‘~~~~‘)]“2r, 

(3.8a) 

and n, = (nd. It is easy to show that the 
expression for q, coincides with that for Qp, 
given above for the case nr = II-, = n/2 
and n = 1. On the other hand, qr is the 
discontinuity in the spin cr particle distribu- 
tion at the Fermi surface. This means (8) 
that the effective mass renormalization 
(with respect to the bare band mass ma) is 

!s- 
MB 

- 4;‘. (3.8b) 

Note that in general (i.e., for n < 1) the 
effective mass is spin dependent; this is not 
so for n = 1, as can be seen from (3.8) by 
imposing the condition nr + n-, = 1. The 
case corresponding to the half-filled band 
state will be considered in detail below. 

The mass enhancement factor q;’ is k- 
independent. This is the reason why we can 
identify it with the inverse band narrowing 
factor (Ca-‘) which is determined from the 
global energy analysis. Taking a(~,,) in the 
optimized form (2.9b) one finds at T = 0 

2 

m,=l- II 

m* ( ) UC ’ 
(3.9) 

i.e., the quasiparticle mass is divergent as 
U * U, . The transformation of the metallic 
state into a system of localized moments at 
U = UC therefore represents a localization 
caused by the many-body interaction. The 
metallicity requires formation of ionic con- 
figuration M + and M - out of the atomic M,, 
states, and the M- state involves energy 
U associated with the Coulomb repulsion 
which suppresses the formation of ionic 
states M’ if U > UC. 

To show that the transition with Q + 0 
(i.e., U + U,) represents for n = 1 a true 
phase transition one can calculate (8) the 
magnetic susceptibility of the interacting 
metallic electrons in this case. This quantity 
is obtained by expanding q, to order m2, 
where m = (nit - ni 1 ). We have then for 
n=l 

4cT = qm = 8rlU - 277) x 

m2 

i [ l + 4 
1 

4 - (1 _ 27))2 II f (3.10) 

The corresponding ground state energy of 
the weakly magnetized state is then 

E,/N=q,E+ Uy + ?q,, 
4x0 

(3.11) 

where the last term expresses work per- 
formed on the system to magnetize it and x0 
is the bare band Pauli susceptibility per site 
(x0 = 2~.~&p’(er), where PO(+) is the density 
of bare states per spin per site at the bare 
Fermi energy or). Note that in deriving the 
last term in (3.11) we have taken the density 
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p(p) of quasiparticle states (per spin per site) 
to be related to the corresponding quantity 
for the bare electrons via the relation 

p(p) = Po(&F = d9nJ 
4, ’ 

which follows in a straightforward manner 
from (3.8). Substituting (3.11) and grouping 
the terms containing m 2 together and subse- 
quently minimizing the resultant expression 
with respect to 7 one obtains 

On casting the whole second term into the 
form m2/4X, we obtain an explicit form of 
the zero-field susceptibility for the interact- 
ing system in the form 

X= 
.,O 

(3.13) 

Thus, x diverges at T = 0 either when (i) a0 
vanishes, i.e., when U = UC, or when (ii) 

1 + U/(2U,) 
s= 1 - POU (1 + u,uc)2 = 0, (3.14) 

i. e . , when the renormalized Stoner criterion 
is met. In case (i) the Mott (or Mott-Hub- 
bard) transition to the insulating state takes 
place, whereas in the case (ii) shows that the 
system undergoes a phase transition to a 
ferromagnetic state. The divergence of x es- 
tablishes that a true phase transition has 
taken place in either case. For the rectangu- 
lar DOS specified by (3.5) the normalized 
Stoner factor at the Mott transition is 3 = 
so = t; i.e., no ferromagnetic instability can 
take place though x is enhanced by the fac- 
tor (@o,!?)-’ in the vicinity of the transition. 

The expressions for the effective mass en- 

hancement and x permit an examination of 
the Fermi liquid characteristics of almost 
localized electrons. Namely, as will be 
shown explictly in the next section, the lin- 
ear-specific heat coefficient y is given by 

Y = (m*lmd yo, (3.15) 

where y. is the linear coefficient for bare 
(band) electrons, i.e. has the form 

Also, the expression (3.13) for x can be re- 
written as 

(3.17) 

Therefore, the Wilson ratio R is 

R&&4 
Y YOS’ 

(3.18) 

This ratio is finite at the metal to Mott insula- 
tor transition if 3 is finite. This property 
of almost localized electrons distinguishes 
them from electrons for almost magnetic 
systems for which spin fluctuations greatly 
enhance x and drive the magnetic transition 
for Up0 ---, 1. In the present description the 
Stoner factor Up0 is reduced (cf., (3.14)) 
by the charge fluctuations which freeze 
out at the Mott (U = UC) transition, i.e., 
for 7jo = 0. 

One can draw the analogy between the 
present and the Landau theory of the Fermi 
liquid even further. Namely, starting from 
the standard parametrization of the interac- 
tion between the quasiparticles in the Lan- 
dau theory (13) one obtains the following 
expression for the quantities of interest: 

7 = YOU + iFs) = yo(m*lmB) (3.19) 

x = x0=$1 + Fi)-‘, 

as well as for the bulk compressibility K de- 
fined through 

(3.20) 



FERMI LIQUID BEHAVIOR 77 

in the form 

K = KO(l + F$)-’ m” (3.21) 
mB 

In these equations F& Fi, and Ff are the 
standard interaction parameters, p = N,IV 
is the particle density within the volume V, 
and K~ is the compressibility for the bare 
electrons. Additionally, in deriving the sec- 
ond part of the relation (3.19), Galilean in- 
variance has been assumed. To apply this 
invariance to the interacting electrons their 
momentum must be a good quantum num- 
ber, i.e., one must be able to ignore the 
effect of the periodicity of the lattice which 
produces the interacting gas confinement 
within the volume V. 

Using (3.9), (3.13) and the expression for 
(QlaN,) derived by Rice and Brinkman in 
Ref. (8), one obtains the following explicit 
expressions for the parameters (14) 

Ff = 3{[1 - (VlU,)2]-1 - l}, (3.22) 

1 + U/(2U,) 
Fi.i = -POU (1 + U/U,)2 (3.23) 

F i 
1 1 

= upo 1 + U/(2U,)(l - UlU,)2’ (3*24) 

Note that p” describes the DOS for one spin 
direction only. The facts that close to local- 
ization Fz i= - $ while K drops precipitously 
and y rises sharply have been used to char- 
acterize liquid 3He as an example of an al- 
most localized Fermi liquid. In other words, 
the solidification of liquid 3He under pres- 
sure is regarded as an example of Mott local- 
ization, the localized moments being dis- 
played by the nuclear spins of 3He. We will 
return to this interpretation later, when dis- 
cussing the localization process at nonzero 
temperature. 

Finally, we discuss briefly properties of 
almost localized electrons in an external 
magnetic field (II). We have mentioned 
above (cf., Eq. (3.8)) that for it < 1 the 
effective mass is spin dependent. Figure 3 

t 
W’=WQ 

+ 

“g$’ Minority 
spin 

+ 

t 
-W 

+ 

c 

-W(l-II) 

t 

FIG. 3. Schematic representation of quasiparticle 
states in band narrowed by Coulomb repulsion both for 
the magnetic field H, = 0 (top) and H, # 0 (bottom). 

illustrates the spin direction dependence of 
the band narrowing factor in an applied mag- 
netic field. The spin majority subband be- 
comes wider with increasing magnetization 
while spin minority band narrows down. 
Equivalently, the effective mass for the ma- 
jority subband rn; is reduced to the band 
mass ma when the magnetic polarization 

m = (nit - nil) * 1, while the correspond- 
ing mass in the spin minority subband grows 
spectacularly. The spin dependence of m * is 
due to the circumstance that the correlation 
function 7 = (ni t ni 1 ) is reduced in the mag- 
netized state and hence the Coulomb inter- 
action part Ur, is suppressed. The majority 
spin electrons encounter a small number of 
minority electrons and therefore in the rng 
+ 1 limit they behave as band electrons (7 
= 0 then). By contrast, each of the minority 
electrons encounters many majority spin 
electrons and scatters strongly; hence, their 
mass is enhanced in the field (Fig. 4). 

Apart from the spin asymmetry there is an 
enhanced value of the spin splitting between 
the spin subbands. This enhancement leads 
to a strong field dependence of magnetiza- 
tion which thereby saturates in physically 
accessible fields. To demonstrate this prop- 
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FIG. 4. The effective mass enhancement due to elec- 
tron-electron interaction as a function of reduced field 
h = (f)g&U W. The spin asymmetry of the enhance- 
ment is discussed in the text. 

erty explicitly we calculate the magnetiza- 
tion curve for a DOS in the form (3.5) using 
the quasiparticle energies 

where Ha is the applied magnetic field, g is 
the LandC factor, and pa is the Bohr magne- 
ton. The self-consistent equation for ~1, = 
(nj,) has the form 

(3.26) 

Taking a., as given by Eq. (2.14), the mini- 
mization of the groundstate energy with re- 
spect to v for n 3 1 leads to the relation 

70 = 
n2-m2 I-c 

4 { UC 

(n2 - m2)[(1 - n/2)2 - m2/4] 
[n(l - n/2) - m2/2]’ - m2(1 - n)2 

zaJL2?c I-- u 
4 ( I UC . 

(3.27) 

Additionally, the magnetization curve is lin- 
ear, i.e., 

gpBHa 1 
m = -j7-(1 _ U/(7)2’ (3.28) 

The presence of the factor (1 - UlUJ2 
makes possible the magnetization saturation 
in physically accessible fields and for U 
close to UC. This property distinguishes al- 
most localized electrons from quasiparticles 
forming an ordinary Fermi liquid. Con- 
versely, the strong polarization arising from 
the applied field makes almost localized 
electrons to resemble localized moments 
into which they transform at U = 17,. 

For n = 1 neither the band narrowing 
factor (2.14) nor the factor (3.8) depends on 
u. Nevertheless, the effective mass varies 
strongly with magnetic field, as shown in 
Fig. 5. The magnetization curve in the half- 
filled band case is strongly nonlinear, as is 
demonstrated in Fig. 6. The strongly upward 
sweep in the m(H) curve is regarded as a 
signature of almost metamagnetic behavior, 
as discussed in relation to 3He in Ref. (15). 
The field dependence of 7 for this case is 
shown in Fig. 7. The singlet configuration of 
atoms is indeed suppressed with the growing 
field h = (1/2)gpBHaiW. 

In summary, in this section we have 

Reduced field, log,,h 

FIG. 5. Same as in the legend to Fig. 4 for n = 1 and 
UIU, specified. Note the absence of the spin direction 
dependence of the mass enhancement for the half-filled 
band case. 
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FIG. 6. Magnetic field dependence of the magnetic 
moment m = (nit - nil) per site. The magnetization 
curve is strongly nonlinear and saturates in physically 
accessible fields. 

shown that the magnetic susceptibility and 
the effective mass are strongly enhanced 
close to the Mott transition because of the 
suppression of the charge fluctuations in the 
system. The mass is strongly enhanced for 
U + UC because the charge transport 
throughout the system is impeded to the de- 
gree that r), diminishes. This mass enhance- 
ment corresponds to an enhancement of the 
DOS at the Fermi level by a factor [l - (Ul 
UJ2]-’ by which the Pauli susceptibility is 
also correspondingly increased. The addi- 
tional increase in x arrives from the growth 
of the magnetic moment (Sf) with U. The 
magnetization of an almost localized Fermi 

Reduced field, log,,h 

FIG. 7. Field dependence of the double occupancy 
probability 1). The dependence is not monotonic for an 
almost localized Fermi liquid. 

liquid saturates in physically accessible 
fields; this is one of the precursory localiza- 
tion effects for U 3 UC. 

4. Low Temperature Properties of an 
Almost Localized Fermi Liquid 

In this section we discuss the properties 
of an almost localized Fermi liquid in the 
low temperature regime. For this purpose 
we generalize the Sommerfeld expansion 
(16) developed originally for the description 
of an electron gas and extended later (13) to 
the case of interacting electrons. 

We start from the expression for the nor- 
malized band energy at T > 0: 

E,IN = (l/N) 2 Ekufklr + Uq. (4.1) 
kr 

From our interpretation of a, as a band 
narrowing factor, one can express the den- 
sity p”(E) of quasiparticle states (for one 
spin direction) via the corresponding quan- 
tity p’(e) for the bare electrons. One finds 
(9) that 

p’(E) = f Po 
(r 

In the limit n = 1 of interest to us in this 
section we set @‘, = @‘; therefore, the ex- 
pression (4.1) can be rewritten in the follow- 
ing integral form 

w/2 

E,IN = 2@ 
-w/2 

(4.2) 

where T” = T/a plays the role of effective 
temperature for the bare electrons, p. is the 
chemical potential for the bare electrons, 
and the ( - W/2, W/2) energy interval deter- 
mines the bare band limits. For the symmet- 
ric shape of the DOS assumed for the sake 
of simplicity, i.e., for P(E) = p( --E), we find 
that p = 0 for arbitrary T and Ho. 

Analogously, we define the free energy 
functional per site as 
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x [fk,ln fk(T + (1 - fk&(l - fkc>l. (4.4) 

This functional must be minimized with re- 
spect to n and m (in the magnetized state). 
For it = 1, @q = @ and Eq. (4.4) can be 
rewritten in the form 

Sommerfeld expansion and the low T analy- 
sis for almost localized electrons. On minim- 
izing (4.6) with respect to 9 one can deter- 
mine several physical quantities of interest. 
Namely, 

(i) the effective mass enhancement of qua- 
siparticles for ZZ, = 0, 

F F,,(T*, H”) m* 1 -- 
z = al N + UT), (4.5) G - 1 - z2 

where H* = Hal@, and F, is the free energy 
for electron gas at temperature T* and in the 
applied field H*. This expression for F is 
related to the same quantity (F,) for the bare 
electrons in the same manner as the total 
energy E is related to E (cf., Eq. (2.3)). In 
other words, the bare states are in one-to- 
one correspondence to the interacting states 
both at T = 0 and for T > 0. Parameters 
such as the mass enhancement (W’) or the 
effective Zeeman splitting &H*) will de- 
pend on temperature. 

Expression (4.5) permits a Sommerfeld- 
type expansion to be carried out on F. since 
this expression represents the standard for- 
mulation for the free energy of an electron 
gas. The detailed steps for a fourth-order 
expansion are very tedious (cf. the second 
Ref. (IO)) and lead to the result 

-=Q~+Ur)A?c--- F rr4 (k, U4 

T I 

2@ 36 G3 

(~‘1~ m2 ;p-- + #pOa(T*) + - . * ’ (4.6) 
P 

where 

(4.7) 

and where p”, p’, and p” are the bare density 
of states and its first and second derivatives, 
all taken at the bare Fermi level position 
or. Eq. (4.6) must be still minimized with 
respect to r] and m. This feature constitutes 
a principal difference between ordinary 

(4.8) 
where Z = U/U,. The particles become 
heavy for I+ 1; also as the equation shows, 
the mass m * grows with T, signalling a per- 
cursory localization of almost localized 
electrons. 

(ii) The zero-field-specific heat is found 
from aE/aT as 

c _ y0T I 36T3z2 
" cp Oki% 

+ ;$ [;p” - ($1 T3, (4.9) 

where y. = (2/3)n2kipo is the linear coeffi- 
cient in the specific heat per site for bare 
(band) electrons. The presence of electron 
correlations manifests itself in the renormal- 
ization of y - (1 -Z2)-l, and in thepositive 
T3 term. It has been shown recently (17) 
that an inclusion of nonlocal spin fluctuation 
starting from the Gutzwiller state as a refer- 
ence (mean-field) type of state leads to a 
T31n (TIT,) contribution to C, instead of T3 
contribution provided in (4.9). 

(iii) The zero-field susceptibility for U + 
UC is found from d2F/dHi to yield 

x0 
’ = l(1 - Z)(l - 3pUJ8) - rr2(kBT)2po 

’ - d 2U,(l - Z)(l - 3UJ8) I 
(4.10) 

where 
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x (1 - $uJ, (4.11) 

and x0 = 2&p,, is the Pauli susceptibility 
(per site) for the bare electrons. We see 
that the T* term is strongly enhanced for 
I* 1. 

Summarizing, the low T properties of al- 
most localized systems are similar to those 
for almost magnetic system (18). The quasi- 
particle picture presented above thus cor- 
responds to a paramagnetic heavy electron 
metal with enhanced spin fluctuations. 
These fluctuations may lead to a superfluid 
state as is the case for liquid 3He (24); the 
corresponding superconducting state with 
pairing mediated by an exchange of the spin 
fluctuation among almost localized charged 
fermion is not yet found, although both 
heavy fermion systems and high T, super- 
conductors seem to be strong candidates. 

We have mentioned above that the 
Mott-Hubbard localization for T = 0 may 
be regarded as a continuous phase transi- 
tion; the optimal double occupancy derived 
earlier, i.e., 

i 

(l/4)(1 - U/U,) for II 5 U, 
70 = 

0 for U 2 UC, 

can be regarded as a mean-field order pa- 
rameter describing the Mott-Hubbard lo- 
calization: This electron localization reflects 
the change in character of x from Pauli to 
Curie behavior; this change in turn is sig- 
naled by the divergent susceptibility as U+ 
UC. In the next section we discuss in detail 
the nature of metal-insulator transition as- 
sociated with this localization at nonzero 
temperature. 

5. Discontinuous Metal-Insulator 
Transitions at T > 0 

In this section we discuss a theory that 
deals with first-order metal-insulator at 
nonzero temperature. The boundary be- 

4 2-3 
3-2 
4 - 1.79 
5 - 1.77 
6 - 1.5 
7 - 1.2 

3 

1 2 3 4 5 

1000/T (K-l; 
7 

FIG. 8. Experimental measurements (19) of resist- 
ivity in the logarithmic scale as a function of inverse 
temperature 1000/T for the (V,-,Cr,),O, system. The 
atomic content x of Cr20, in V203 for each curve is 
specified. 

tween the metallic state of almost localized 
electrons and the insulating state composed 
of localized magnetic moments is deter- 
mined from the coexistence condition re- 
curring that the free energies for these two 
states coincide. In other words, we treat 
the two states as separate phases in the 
thermodynamic sense. This approach leads 
to rationalization of both metal-insulator 
transitions and of the reentrant metallic 
behavior in the high temperature regime, 
observed in Cr-doped V,O, systems (18). 
The experimental results for the system 
(Vi-,Cr,),O, are shown in Fig. 8 where 
the temperature dependence of the resist- 
ivity is drawn (29). The family of the 
curves presented in that figure is the basis 
of the phase diagram plotted in Fig. 9. At 
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FIG. 9. The phase diagram of the (VI -,Cr,)203 system 
on the T-x plane. The continuous lines with hysteresis 
represent first-order boundaries between the phases 
specified. 

low temperature the alloy is an antiferro- 
magnetic insulator (AFI); in the vicinity 
of TM’ = 170 K a drastic change to a 
paramagnetic metal (PM) phase suddenly 
sets in; near T,, = 295 K the material 
experiences in a narrow Cr concentration 
range to a paramagnetic insulator (PI), and 
on further heating the alloy gradually re- 
verts back to a metallic state (PM’) above 
600 K, which is rather similar to the low 
temperature (PM) phase encountered for 
170 K 5 T 5 295 K. The metallicity at 
intermediate and high temperatures, sepa- 
rated by a region of insulating properties, 
is termed reentrant metallic behavior. 

The principal feature of Mott localization 
is associated with the fact that band and 
interaction parts in the total energy (2.3) 
almost compensate each other. Hence, the 
much smaller entropy or applied field con- 
tributions influence the stability of local- 
ized phase against the Fermi liquid state, 
as we will see in this Section. 

5.1. Mott Localization of Almost 
Localized Electrons: Low 
Temperature Regime 

The free energy functional (per site) for 
the correlated electron assembly is given in 
the lowest order by 

Minimization with respect to 77 leads to 

5 = (1 - Z)% - g*. (5.2) 

The Mott (or Mott-Hubbard) localization is 
a transformation of itinerant (almost local- 
ized) electrons in a half-filled band into a 
lattice of localized moments. The free en- 
ergy of those moments which can randomly 
be in the spin-up or spin-down orientation 
may be expressed as 

FI - = -k,Tln2. 
N (5.3) 

The coexistence condition determining the 
localization boundary is F = FM, or, ex- 
plicitly, 

F 
- = -k,lln2. 
N (5.4) 

This condition yields two transition temper- 
atures 

JOZEF SPAEEK 

k,T, = 3 
27r *PO 

(in 2)* - i x 

l/2 

&,lEl(l - 1)%& II . (5.5) 

For a DOS in the form (3.5) these tempera- 
tures are 

!+‘$[l- ($J] x 

i [ 
(In 2)* + (In 2)2 - : 5 LEi 

l/2 

11 
, 

(5.6) 
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as represented by a retrograde curve in Fig. 
10. The lower part of the curve corresponds 
to the T- solution while the upper corres- 
ponds to T, . The two solutions meet at criti- 
cal point U = U,, given by 

The corresponding transition temperature 
T = T,is 

k,l,=$$ - ($11. (5.8) 

For CT 5 U,, the Fermi liquid state is stable 
for all T. 

From inspection of Fig. 8 it is clear that 
for U/U, > 1 only the localized state is en- 
countered. For UIU, in the range U,‘, < 
U < UC there is a single paramagnetic metal 
(PM)-paramagnetic insulator (PI) phase 
transition. For U,, < U < UL two phase 
transition are found with raising tempera- 
ture: this is the regime of reentrant metallic 
behavior, with the PM -+ PI + PM’ se- 
quence as temperature is raised. Strictly 
speaking, the existence of the point at U = 
Us can be proven only by recourse to a more 
general approach discussed in Section 5.2. 

Reentrant metallic behavior is readily un- 
derstood from a physical point of view. 
Namely, at temperatures close to T = 0 the 
entropy of disordered localized moments is 
large and equal to kaln 2 per electron (we 
neglect any magnetic ordering effects for the 
time being), whereas in the Fermi liquid it 
grows linearly with T from zero. Hence at T 
= T- the free energy of localized particles 
outweighs that of the Fermi liquid, even 
though at T = 0 the opposite is true. How- 
ever, as the temperature rises, the Fermi 
liquid entropy grows and approaches the 
value 2kaln 2 in the high T limit. Thus, the 
metallic phase must become stable again in 
the high temperature limit. The detailed 
shape of the phase boundary is determined 
by an interplay between the competing en- 

ergy and entropy contributions. The com- 
petitive nature of the energetics associated 
with the two phases involved is shown sche- 
matically in Fig. 9, where the free energy 
of the metallic phase is represented by the 
parabolas while the straight line represents 
the phase with localized electrons. We show 
next that the above features are also encoun- 
tered in a more general approach (20) which 
we discuss next. 

5.2. Metal-Insulator Transitions at 
Arbitrary Temperature: Two-phase model 

As emphasized earlier for T = 0 (cf., Sec- 
tion 2), the general formulation of localized 
vs itinerant electron state dichotomy is 
based on the idea that close to the Mott 
transition the band (E) and Coulomb (U) en- 
ergies are of comparable magnitude. There- 
fore, both the atomic and band aspects of 
the electronic states should be treated on an 
equal footing. To express this equivalence 
within a workable scheme at arbitrary T we 
introduced the idea (20) that the band nar- 
rowing factor @p(r)) renormalizing the bare 
band energy E in (2.3) describes the fraction 
of electrons of itinerant (extended) charac- 
ter, whereas (1 - (P) represents the portion 
of the localized (atomic) character. This 
subdivision is also apparent in (3.7) where 
the average number n, of particles in the 
state Jku) is composed of a fraction qa in the 
quasiparticle state and (1 - q,,) is composed 
of a fraction of particles in the atomic con- 
figuration licr). This subdivision had been 
introduced early on in the development of 
Gutzwiller approach (22). Such a subdivi- 
sion follows also from the fact, introduced 
in Section 2 that Q’(n) is proportional to the 
conditional probability that a hopping pro- 
cess will take place in a correlated system. 
Accordingly, we will phenomenologically 
divide the entropy into two parts: 

1. The fraction @N of the total number 
N, = N electrons with energies & = @‘Ed 
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contributes to the fermionic part, i.e., 

si- -- 
N $kBE 

iYJn& + (1 - &Ml - &A (5.9) 

and 

2. The fraction (1 - a) N provides a con- 
tribution to the localized-moment part, i.e. 

SL N=k,(l - @)5Pilnpi 
i= I 

= - (1 - @)k,[(l - 2T)ln(l - 271) 
- (1 - 27))ln 2 + 2vln q,]. (5.10) 

The quantities p1 . . . p4 represent the prob- 
abilities of empty site, single occupancy 
with spin up or down, and doubly occupied 
site configurations which are respectively r), 
(1 - 27))/2,( 1 - 271)/2, and 7). Within this 
model the total free energy functional is 
given by 

$’ Phase diagram for low temperature 

2 
expansion ( rectangular DOS, n-1) 
4 

0,06 - PM’ 

1.4 1,5 1.6 1.7 1,8 1.9 2.0 u/w 

FIG. 10. Schematic representation of the phase dia- 
gram between paramagnetic metallic (PM and PM’) and 
paramagnetic insulating (PI) phases. The vertical line 
indicates the sequence of phases encountered for a 
given system as a function of temperature. The points 
J to M correspond to the coexistence points of the two 
phases, as shown in the next Figure. 

F/WN \ I 

FIG. 11. Plots of temperature dependence of the free 
energies for the paramagnetic Mott insulator (the 
straight line starting from the origin) and the correlated 
metal (the parabolas a-d correspond to growing U/U, 
ratio from U < U,, to U; < U < UC,). The points of 
crossing L and J correspond to a discontinuous PM + 
PI transition, while those at K and M correspond to the 
reverse (PI + PM’) transition. 

The minimization of (5.11) with respect to 7) 
and the subsequent calculations of the phys- 
ical properties have been performed for a 
featureless (rectangular DOS (3.5) (20). In 
Fig. 12 we provide the metal-insulator 
boundary in the paramagnetic phase. The 
boundary line represents the first-order 
transition line excepting the three points 
that are marked explicitly. The diagram in 
Fig. 12 is similar to that shown in Fig. 8. 
However, the present two-phase model pro- 
vides a justification for the simplified rea- 
soning provided in the preceding section: In 
the PI phase Cp is negligibly small, whereas 
in the PM and PM’ state Cp is appreciable. 
Hence the mixed phase approach provides 
a stable solution with either Fermi liquid or 
localized moment characteristics, as postu- 
lated earlier in the single-phase model. 

As an example we have applied our theo- 
retical calculations to the (V, -$r,.),O, sys- 
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FIG. 12. Phase diagram in the paramagnetic region within a two-phase model discussed in the text. 

tern; we plot in Fig. 13 the value of 7 on a 
logarithmic scale as a function of l/T. The 
inset shows the corresponding data of con- 
ductivity vs l/T in the paramagnetic phase. 
The trends are similar, although the data 
do not exhibit the weak, high temperature 
discontinuity predicted by our theory. The 
absence of the high temperature discontinu- 
ity in the experiment may be attributed to 
the effect of lattice relaxation with changing 
carrier concentration in the high tempera- 
ture regime. A quantitative theoretical anal- 
ysis would require taking into account the 
electron-lattice interaction. One can also 
calculate explicitly the entropy of the transi- 
tion; this quantity was discussed in Ref. 
(W. 

Summarizing this section, we emphasize 
that within the present treatment the first- 
order metal-insulator boundary from the 
metallic side specifies the limit of applicabil- 
ity of the concept of the Fermi liquid (i.e., 
the liquid for which the Luttinger theorem 
(22) holds) and the limit below which the 
Fermi-Dirac distribution can be applied to 
describe the distribution of the quasiparticle 
states at nonzero temperature. Also, one 
should point out the principal difference be- 
tween the Bloch-Wilson and Mott (mag- 
netic) insulators. Namely, the Bloch-Wil- 
son insulators (16) are diamagnetic since the 
filled band states are separated by a gap 
from empty (conduction) states. The Mott 
insulator corresponds to a half-filled band 
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configuration if electron correlations are not 
taken into account. It is a paramagnetic or 
an antiferromagnetic insulator. The exis- 
tence of paramagnetic insulators with an 
odd number of electrons in 3d or 4f shells 
provides the most obvious example of the 
applicability of Mott-Hubbard concepts of 
localized electron states induced by elec- 
tron-electron interactions.The canonical 
examples are MnO and COO. 

One should emphasize that the whole 
present analysis is based on Gutzwiller (sin- 
gle-site) approximation. It leads to the 
Mott-Hubbard localization only in the half- 
filled band case. The description of an insu- 
lating phase for IZ < 1, as observed in high 
T, systems, requires inclusion of non-local 
trapping and disorder (18). Also, most of 
the theoretical approaches concentrated on 
calculating the transition point as a function 
of U/W, the present approach provides the 
discussion of the transitions along the tem- 
perature axis for fixed U/W. 

6. Incorporation of 
Antiferromagnetic Ordering 

In this section we examine the effect of 
antiferromagnetic ordering on the quasipar- 
title picture of almost localized electrons. 
As we have mentioned in the Introduction, 
the kinetic exchange interactions has been 
considered in the limit U 9 W. To generalize 
the applicability of this form of interaction 
to the regime close to the metal-insulator 
transition we introduce the factor (1 - Ca) 
representing the portion of the total number 
of electrons in the localized state. In effect, 
the exchange Hamiltonian has the form (IO) 

si * Sj - d (1 - 27)i)(l - Iqj) 
I 

. (6.1) 

In this expression t is the transfer integral, 
the spin operator Si is defined via (2.10), 

vi = nit nil , and (zj) limits the summation 
to the possible nearest neighbor pairs. This 
term should be added to the quasiparticle 
Hamiltonian considered before. Thus, the 
total Hamiltonian is given by 

H = @ 2 &@kg + UT + H,,. (6.2) 
ku 

The antiferromagnetically ordered lattice in 
the simplest situation is represented by two 
interpenetrating sublattices A and B such 
that each outer shell electron belonging to 
A has spin up and is surrounded by nearest 
neighbors belonging to B with spins down, 
and vice versa. The superstructure formed 
this way (a doubling of unit cell volume for 
some structures) leads in the mean-field ap- 
proximation to a splitting of the narrow band 
into two Slater subbands with dispersion 
relations (22) 

,!?k,,J = *[(a&,)* + A2]1’2, (6.3) 

where the Slater gap 23 = Jz(P), J = (4t2/ 
u)(l - a), and (S,) = (nit - ni~)/2 is the 
sublattice magnetization (the magnetic mo- 
ment per site is g&Sz)). The Slater sub- 
bands are schematically represented in Fig. 
14. The halving of the original band into 
two separate subbands, each containing N 
states, is caused by the magnetic superstruc- 
ture. Therefore, the ground state of the anti- 
ferromagnetic system in the half-filled band 
case will be insulating. This insulating state 
represents a Slater insulator, with the bands 
narrowed by the electron correlations. As 
the NCel temperature is approached (,!P) --, 
0 and the two subbands merge into a single 
band. Therefore, the paramagnetic state of 
the Slater insulator is always metallic while 
that of a Mott insulator can be still insulating 
if the value of U is sufficiently large (-UC). 

The sublattice magnetization in this ap- 
proach is calculated in a self-consistent way 
by minimizing the ground state energy with 
respect to (P). In the case of a featureless 
DOS (3.5) one can calculate this energy ex- 
plicitly, yielding the result 
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FIG. 13. The double occupancy r) (in the logarithmic scale) as a function of inverse temperature WI&r 
for the two-phase model. The representative conductivity curve for (VI-$rJ203 system vs 103/T has 
been shown for comparison. The quantity 7) describes the carrier concentration for the system. 

+ UT - (Jz/8)(1 - 2~)~ + 2E2/Jz. (6.4) 

In the localized limit, where @ + 0 we obtain 
(“) = ,id~~~~~Jz,. (6.6) 

E,IN = - 5214. (6.5) 

Thus, the ground state energy reduces to 
that of the Heisenberg antiferromagnet cal- 
culated in the molecular field approxi- 
mation. 

In order to be able to minimize Eq. (6.4) 
explicitly we need to know the band narrow- 
ing factor in the antiferromagnetic phase, 
i.e., the function Cp = @(q,m). This problem 
has been examined within the Gutzwiller 

As @ -+ 0, (P) + $ as expected for a Heis- 
enberg magnet in the strictly localized limit. 
The model DOS (3.5) for the bare electrons 
is simple enough to permit the calculation 
of the shape of Slater subbands. Namely, 
the density of quasiparticle states is 

approach in Ref. (23). For small magnetiza- 
tion one can take Ca(n, m) = Q(q), where 
a’(~) is specified for the paramagnetic phase. 
Under this condition one obtains from (6.4) 
that 

2 IEl 
p°CE) = E (E2 _ K2)1/2 (6.7) 

where E 5 (El < - [(CDWw/2)2 + z2]1’2. Note 
that the starting (rectangular) of bare DOS 
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is greatly altered in the AF phase. In the 
limit @ + 0 the Slater subbands (narrowed 
by correlations) reduce to two discrete lev- 
els separated by energy 2x (Fig. 14). These 
levels are the spin split levels in the Heisenb- 
erg antiferromagnet. In other words, the 
Mott insulator represents a limiting case of 
Slater-type picture if band narrowing factor 
is included in the quasiparticle picture. 

An important question for us is whether 
the itinerant @later-type antiferromagnet 
can transform discontinuously into a Mott 
insulator. Such calculations have been per- 
formed by Datta (22) taking the band nar- 
rowing for a paramagnetic phase. Within 
this approximation and for the featureless 
DOS we have to determine the character of 
the phase boundary between antiferromag- 
netic insulating and paramagnetic metallic 
phases. As we will argue in the next section, 
the AFI --, PM transition takes place for 
temperatures well below the intrinsic NCel 
temperature TN which for V20, is the 600 
K regime. Therefore, when considering the 
free energy of AFI phase we adopt the low 
temperature approximation 

F AF = -Jz/8 + AT4, 

where the second term is the thermal contri- 
bution due to long wavelength acoustic mag- 
non excitations, and A is related to the ex- 

a 

0 2x 
-5 SLATER GAP 

-4+w/2)“+i5z 

FIG. 14. The density of quasipart&le states showing 
the Slater splitting with the gap 2A. The rectangular 
DOS is shown for comparison. Cp is the band narrowing 
factor. 

change stiffness constant. The first order 
AFI --, PM transition temperature TM, is 
determined by the coexistence condition 
F,F = F, where F is given by Eq. (5.1). 
This condition yields 

TMI=&{[($+4A.AE] -;$$ 

where 

(6.8) 

AE = E 

is the difference between the groundstate 
energies in the metallic and insulating states. 
Positive values of TM, occur only for AE > 
0, i.e., when the stable phase at T = 0 is 
antiferromagnetic. As U + UC, AE in- 
creases and so does TM, as is experimentally 
observed (cf., Fig. 9). 

7. Interpretation of Properties of 
V,O, System 

The metal-insulator transitions in pure 
and doped V,O, involve not only discontinu- 
ous electronic transitions displayed in Fig. 
8, but also accompanying magnetic (Fig. 15) 
and structural changes. In the present analy- 
sis we assume that the electron-electron in- 
teraction provide the principal driving force 
of these transitions; therefore we limit our 
discussion of the overall features observed 
(18, 19) to a purely electronic model. 
Namely, combining the results obtained in 
Section 5 and concerning the 
PM + PI + PM’ sequence of transitions 
with the discussion of AFI --, PM transition 
in Section 6 we can draw the schematic 
phase diagram shown in Fig. 16. In this dia- 
gram we have also marked regimes corre- 
spondingly to different V,O, alloy systems. 
Later we provide a discussion of the con- 
cepts developed above to those systems. 

As mentioned in Section 5.1, three critical 
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FIG. 15. Plot of the magnetic polarization m (in the 
logarithmic scale) vs U/W. The quantity m expresses 
the sublattice magnetic moment in the ground state. 

values of U are important: U,,, UL, and U,. 
The pure V,03 system must be regarded as 
being characterized by a value of U near the 
vertical line U = U,,, since with a small 
substitution of Cr for V the reentrant metal- 
lic behavior and PI phase are evident (cf., 
Figs. 8 and 9). One should note that the 
addition of Cr increases the U/W ratio; this 
is easily understood because the Cr,O, sys- 
tem is a Mott insulator. Microscopically, 
Cr3+ is to the right of V3+ so the ion along 
the 3d transition metal series has a half-filled 
3d set of levels. Hence, the extent of 3d 
wave function (and hence the value of bare 
bandwidth W) is smaller in the former case. 
The opposite is also true (25); namely that 
the substitution of Ti for V decreases the 
U/W ratio and eventually eliminates the 
antiferromagnetism with localized mo- 
ments. The same effect is achieved by 
applying external pressure (26); the related 
experimental results for the (V, -XTi,),O, 
system and for the pure V,O, system under 
pressure are summarized in Fig. 17. The 
critical concentration for disappearance of 
AFI + PM transition is X, = 0.05 while the 
corresponding critical pressure for the pure 
system is =25 kbar (26). As can be seen in 

Fig. 17 the linear specific heat close to the 
onset of insulating phase is strongly en- 
hanced and the magnetic susceptibility is 
large and Pauli like (see the plots for x = 
0.051). These results correlate very well 
with the theoretical discussion of properties 
of almost localized electrons in Section 4. 
Additionally, the large T2 term in resistivity 
of the metallic phase for T+ 0 directly con- 
firms the importance of electron-electron. 
interactions. 

The proposed phase diagram (Fig. 16) 
contains a boundary line between the two 
antiferromagnetic phases: Mott (AFI) and 
Slater (AFM) states. The antiferromagnetic 
metallic (AFM) phase with a small moment 
and low NCel temperature has been actually 
observed both in the (Vi-,Ti,),O, system 
for x L x, as well as in the V2(, -Yj03 system 
(27). One should note that metallicity arises 
from the presence of holes in the lower 
Slater subband created by the Ti substitu- 
tion for V, or by the presence of excess 
oxygen in VZcl -Yj03 case. The circumstance 
that these nonstoichiometric systems re- 
main insulating for small deviation from 

FIG. 16. Schematic phase diagram for the V203 sys- 
tem. The details are provided in the main text. 



90 JOZEF SPAEEK 

Temperature (K 1 

) Resistivity (pS2cml 1 

t 

o-0 
0 100 200 300 

Temperature I K I 
t 

Temperature ( K 1 

1 X, Magnetic susceptibility (163](emu/mole] 

400 1 1 I 
(VlJir1203 

t 

0 
t 0 0 

, , , . , 
0 200 200 400 400 600 600 

T21K2) T21K2) 

C/T [164j(cal.~2mole~‘~ 

~o,osi- 
1.5 . 0,040 

:?5k 

0,038 

1.0 
0,015 

x-o,00 
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of temperature. For the details, see the main text. 

ideal stoichiometry (e.g., for 0 < x < x,) 
provides an argument in favor of hole trap- 
ping in the Mott insulators. A similar behav- 
ior is observed in the La,-,Sr,CuO, system 
for x 5 0.05 (28). Also, the role of disorder 
in localizing the holes should not be ignored. 

One should note that the magnetic suscep- 
tibility in the localized moment (AFI) phase 
is smaller than in PM phase above the transi- 
tion; it is also smaller than that in the para- 
magnetic phase of almost localized elec- 
trons. First, the magnitude of the local 

moment in both insulating and metallic 
phases does not change much since, as we 
have shown, (Sf) = $)(l - 27) = $. There- 
fore, the difference in x must be ascribed to 
a different strength of the AF interaction in 
the two phases and to a large enhancement 
of x in the metallic phase. The strength of 
interaction is reduced by factor (1 - @,J in 
(6. l), which jumps in a discontinuous man- 
ner at the AFI + PM transition. 

The PM phase stabilized by Ti addition 
(or excess oxygen) exhibits a universal be- 
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FIG. 18. Evolution of the AFI -+ PM transition tem- 
perature for (V,-,Ti,),O, system. The concentrations 
xare(29)a,0.0;b,0.01;c,0.02;d,0.03;e,0.04;f,0.049; 
and g, 0.055. Note the universal baseline common for 
all the samples. 

havior illustrated by Fig. 18 (29). Namely, 
the temperature dependence of resistivity 
in the metallic phase is represented by the 
universal baseline, which is to a large extent 
independent of x. This x independence 
means that the disorder introduced by the 
Ti substitution plays only a secondary role 
in the metallic phase of (V, -XTiX),O,. This 
is not so in the insulating phase well below 
ThlI, where the electric transport is domi- 
nated by variable range hopping (30). Also, 
the metallic phase in (Vi-,Cr,),O, system 
sandwiched between the two insulating 
phases (cf., Fig. 8) does not exhibit this type 
of universality. 

Summarizing, we have demonstrated that 
a single band model of Hubbard (2) rational- 
izes the phase diagram and the equilibrium 
properties of the V,O, systems. In other 
words, the Gutzwiller approach (7,d) when 
generalized to nonzero temperatures (9,10) 
forms a starting basis for rationalization of 
the data for pure Ti-, Cr-, and vacancy- 
doped V,O, . The scheme presented here is 
based on the notion that the electronic tran- 
sitions observed in these systems are driven 
by electron-electron repulsive interactions 
which are comparable to their kinetic en- 
ergy. The spectacular predictions of the the- 

ory are discontinuous nature of the transi- 
tions, the reentrant metallic behavior at high 
temperature, and a large (and equal) en- 
hancement of the specific heat and the mag- 
netic susceptibility in the metallic phase 
close to the localization. All observed I + 
M and M 4 I transitions can be regarded as 
an example of Mott transition (31). In this 
way, the present theory resolves a long 
standing problem why the Mott transition 
AFI + PM in (V, -XCrX),O, is accompanied 
by an “anti-Mott” transition PM + PI and 
still followed by another PI * PM’ transfor- 
mation of localization of the electrons in 
the lower Hubbard subband (or in the Mott 
insulator) in the situation of the half-filled 
band configuration. 

8. Concluding Remarks 

The problem of electron localization in a 
crystalline material as induced by Coulomb 
interactions has been approached from 
three distinct directions. First, in his papers 
Mott (32) determined a critical interatomic 
separation below which the screening of nu- 
clear charges is sufficiently strong to pre- 
vent the formation of hydrogenic like bound 
states in a solid. The criterion for the 
metal-insulator transition is n1’3a, > 0.25, 
where n is the carrier concentration and uH 
= &/Me2 is the effective radius of hydro- 
geniclike 1 s state in a medium with dielectric 
constant E. This criterion of localization 
proved to be very successful for the descrip- 
tion of heavily doped semiconductors such 
as Si : P. Second approach has been devel- 
oped by Hubbard (2) who considered the 
narrow band model bearing his name; using 
a Green function technique he was able to 
show that for a critical ratio U/W - 1 a sys- 
tem with a half-filled narrow band splits into 
two subbands as shown in Fig. 1. The third 
approach was initiated by Gutzwiller (7) and 
elaborated in detail for T = 0 by Brinkman 
and Rice (8) in which the band is strongly 
narrowed with growing UIW: at U = U, 
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the electrons become localized since their 
effective mass m* diverges. It is not clear 
as yet how to relate the Hubbard and Gutz- 
willer-Brinkman-Rice pictures (Figs. 1 and 
2). The Gutzwiller approach and its exten- 
sion (10) have been discussed in detail in the 
present review since the invoked quasiparti- 
cle picture permits the generalization of the 
theory to nonzero temperatures (9, 20). 

It must be emphasized that in the ap- 
proach reviewed here the phase boundary 
for the discontinuous M + I transition at 
T > 0 is determined through a (free) energy 
balance of phases involved. At T = 0 the 
PM + PI transition is continuous; therefore 
consideration of the screening divergence 
(8,33) can be applied to determine the stabil- 
ity limit for the metallic phase in this case. 

The discussion of the metal-insulator 
transition for V,O, system starting from 
the Hubbard model does not take into 
account important factors such as the cou- 
pling of the electron system to the lattice, 
the orbital degeneracy of the 3d states 
involved, and the disorder associated with 
the Ti, Cr substitutions or oxygen excess. 
The coupling to the lattice is important 
since there is a large volume change associ- 
ated with the low temperature transitions 
and a remarkable hysteretic behavior ac- 
companied the discontinuous transition 
(19). Hence, the theoretical model de- 
scribed above should be regarded as repro- 
ducing the main qualitative features of the 
observed effects. One feature should be- 
come clear: the volume changes and the 
observed hysteresis (19) are regarded as 
effects concomitant to the localization-de- 
localization transition induced by electron 
correlations. 

One should also mention that an alterna- 
tive approach based on a functional inte- 
gration scheme (34) and coherent potential 
approximation (35) have been devised 
which provide phase diagrams similar to 
ours, except for the absence of the reen- 
trant metallic behavior. However, the 

phase boundaries in those models are con- 
tinuous, in disagreement with experiment 
for V,O, system. The reader interested in 
a detailed discussion of those models is 
referred to Ref. (36). 
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